Assignment 5 - Solutions

MATH 3175-Group Theory

Problem 1 Let $G=\mathbb{Z}_{32}^{\times}$the multiplicative group of invertible elements in \mathbb{Z}_{32}. Then

$$
\begin{aligned}
G & =\{[a] \mid a \in \mathbb{Z}, 0<a<32, \operatorname{gcd}(a, 32)=1\} \\
& =\{[a] \mid a \in \mathbb{Z}, 0<a<32,2 \nmid a\} \\
& =\{[11],[3],[5],[7],[9],[11],[13],[15],[17],[19],[21],[23],[25],[27],[29],[31]\},
\end{aligned}
$$

an abelian group of order 16. The subgroup $H=\langle[31]\rangle=\{[[1],[31]\rangle$ is a cyclic group of order 2 , while the subgroup $H=\langle[3]\rangle=\{[[1],[3],[9],[27],[17],[19],[25],[11]\}$ is a cyclic group of order 8. Clearly, $H \cap K=\{[1]\}$. Moreover, $H K=G$, since all the remaining elements in G (besides those already in H or K) are of the form $h \cdot k$ with $h \in H$ and $k \in K$:

$$
\begin{aligned}
& {[5]=[31] \cdot[27], \quad[7]=[31] \cdot[25], \quad[13]=[31] \cdot[19], \quad[15]=[31] \cdot[17],} \\
& {[21]=[31] \cdot[11], \quad[23]=[31] \cdot[9], \quad[29]=[31] \cdot[3] .}
\end{aligned}
$$

Since the elements of H and K commute, we may apply the Decomposition Theorem and conclude that $G \cong H \times K$. In other words, $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{8}$.

Problem 2 For a finite group G, and a prime p such that $p||G|$, we write $| G \mid=m p^{k}$ with $p \nmid m$, we let $\operatorname{Syl}_{p}(G)$ be the set of p-Sylow subgroups of G, and we denote by n_{p} the size of this set. By Sylow I, $n_{p}>0$, while by Sylow III, $n_{p} \equiv 1(\bmod p)$ and $n_{p} \mid m$. Finally, by Sylow II, all p-Sylow subgroups are conjugate; thus, if $n_{p}=1$, then $\operatorname{Syl}_{p}(G)=\{P\}$, and P is a normal subgroup of G.

1. Let G be a group of order $20=4 \cdot 5$. We then have $n_{5} \equiv 1(\bmod 5)$ and $n_{5} \mid 4$. Thus, $n_{5}=1$, and there is a unique 5 -Sylow subgroup of G, call it P, which must be a normal subgroup. Moreover, $|S|=5$ is neither 1 nor 20 , and so P is a non-trivial, proper, normal subgroup of G, thereby showing that G is not a simple group.
2. Let G be a group of order $10 \cdot 11^{5}$. We then have $n_{11} \equiv 1(\bmod 11)$ and $n_{11} \mid 10$; thus, $n_{5}=1$. Arguing as above, we conclude that G is not simple.
3. Let G be a group of order $|G|=p q^{r}$ with p and q both prime, $p<q$, and $r>0$. We then have $n_{q} \equiv 1(\bmod q)$ and $n_{q} \mid p$. The last condition gives $n_{q}=1$ or $n_{q}=p$. But since $1<p<q$, it follows that $p \not \equiv 1(\bmod q)$; hence, $n_{q}=1$. Once again, this implies that G is not simple.

Problem 3 Let G be a group with $|G|=30=2 \cdot 3 \cdot 5$, and denote by t_{r} the number of elements of G that have order r.

1. We have $n_{5} \equiv 1(\bmod 5)$ and $n_{5} \mid 6$; thus, $n_{5}=1$ or 6 . Moreover, $n_{3} \equiv 1(\bmod 3)$ and $n_{3} \mid 10$; thus, $n_{3}=1$ or 10 .
2. First note that all the p-Sylow subgroups of G are cyclic. Indeed, there is no repeated factor in the prime factorization of $|G|$; thus, if P is a p-Sylow, then $|P|=p$ (and so $P \cong \mathbb{Z}_{p}$).

Now suppose P_{1} and P_{2} are two distinct Sylow p-subgroups of G. Then $P_{1} \cap P_{2}$ is a proper subgroup of P_{1} (and also P_{2}), and so $\left|P_{1} \cap P_{2}\right|$ divides $\left|P_{1}\right|$, by Lagrange's theorem. But $\left|P_{1}\right|=p$ is a prime, and therefore $\left|P_{1} \cap P_{2}\right|=1$, showing that $\left|P_{1} \cap P_{2}\right|=\{e\}$.

The two facts proved above imply that $t_{p}=(p-1) n_{p}$, for every prime $p||G|$. (All we used here is that $|G|=p_{1} p_{2} \cdots p_{n}$, with all distinct prime factors p_{i}.)
3. If $n_{5}=6$, then $t_{5}=(5-1) 6=24$. Likewise, if $n_{3}=10$, then $t_{5}=(3-1) 10=20$.
4. If both $n_{5}=6$ and $n_{3}=10$, then $30=|G|>t_{5}+t_{3}=24+20=44$, a contradiction. Thus, we must have either $n_{5}=1$ or $n_{3}=1$. In either case, the argument from the previous problem shows that G contains a non-trivial, proper normal subgroup (or order 5 or 3); hence, G is not simple.

Problem 4 Let p be a prime.

1. The symmetric group S_{p} has order $p!=(p-1)!\cdot p$. The prime p divides p !, but not $(p-1)$!. Thus, the Sylow p-subgroups of S_{p} have order precisely p.
2. One such Sylow p-subgroup is $H=\langle(12 \ldots p)\rangle$, the cyclic group of order p generated by the cyclic permutation ($12 \ldots p$) that sends $1 \rightarrow 2 \rightarrow \cdots \rightarrow p \rightarrow 1$.
3. Recall the following: if $\sigma=\left(a_{1} \ldots a_{k}\right)$ is a k-cycle, and τ is any permutation, then $\tau \sigma \tau^{-1}$ is the k-cycle $\left(\tau\left(a_{1}\right) \ldots \tau\left(a_{k}\right)\right)$.

Now suppose $p>3$, and let $H \leq S_{p}$ be the above subgroup. Taking $\tau=(12)$ and $\sigma=(12 \ldots p)$ we get $\tau \sigma \tau^{-1}=(213 \ldots p)$, which does not belong to H. Thus, H is not normal.

Problem 5 The group $G=\mathrm{GL}_{3}\left(\mathbb{Z}_{2}\right)$ has order $\left(2^{3}-1\right)\left(2^{3}-2\right)\left(2^{3}-2^{2}\right)=168=2^{3} \cdot 3 \cdot 7$. A Sylow 2 -subgroup of G must have order $2^{3}=8$. We have seen before such a subgroup (on the Midterm exam): it is the Heisenberg group of 3×3 upper-diagonal matrices entries in \mathbb{Z}_{2} with 1 s along the diagonal. In turn, this group is isomorphic to the dihedral group D_{4} of order 8 .

Bonus question: By Sylow III, the number n_{2} of Sylow 2 -subgroups satisfies $n_{2} \equiv 1(\bmod 2)$ and $n_{2} \mid 21$; thus $n_{2} \in\{1,3,7,21\}$. It can be shown that G is actually a simple group: it is isomorphic to $\operatorname{PSL}\left(2, \mathbb{Z}_{7}\right)$, the famous Klein simple group of order 168 (the smallest non-abelian simple group after the alternating group A_{5} with 60 elements, which is isomorphic to $\left.\operatorname{PSL}\left(2, \mathbb{Z}_{5}\right)\right) .{ }^{1}$ This immediately rules out $n_{2}=1$, since otherwise H would be normal, contradicting the fact that G is simple. But it also rules out $n_{2}=3$, since otherwise the corresponding representation, $\varphi: G \rightarrow S_{3}$, cannot have $\operatorname{ker}(\varphi)=\{1\}$ (since $168>3!=6$), and also cannot have $\operatorname{ker}(\varphi)=G$ (since φ is transitive, by Sylow II), and so $\operatorname{ker}(\varphi)$ is a proper, non-trivial normal subgroup of G, thereby contradicting the fact that G is simple. So this leaves open the question whether $n_{2}=7$ or $n_{2}=21$, since 168 divides both 7 ! and 21!, so the previous argument(s) are not dispositive. The answer, in fact, is $n_{2}=21$.

Indeed, the group G has 21 elements of order 2, and together they form a conjugacy class, $C=$ $\left\{z_{1}, z_{2}, \ldots, z_{21}\right\}$. The centralizer in G of each such element z_{i} is a group of order 8 , and so must be a Sylow 2-subgroup, call it P_{i}. For instance, H is the centralizer of the matrix with 0 's next to the diagonal, and a 1 in the upper corner; if we call this matrix z_{1}, then $P_{1}=H$. Moreover, if $z_{i}=g_{i} z_{1} g_{i}^{-1}$, then $P_{i}=g_{i} H g_{i}^{-1}$, and so $\operatorname{Syl}_{2}(G)=\left\{P_{1}, P_{2}, \ldots, P_{21}\right\}$, as claimed.

Problem 6 Let $G=D_{6}=\langle r, s| r^{6}=s^{2}=(s r)^{2}=1$, and consider the normal subgroups $N_{1}=\left\langle r^{3}\right\rangle$ and $N_{2}=\left\langle r^{2}\right\rangle$. The lattice of subgroups of G, as well as those of its respective factor groups, G / N_{1} and G / N_{2}, are depicted below. ${ }^{2}$ In each case, the projection map $\pi_{i}: G \rightarrow G / N_{i}$

[^0]($i=1,2$) establishes a 1-to-1 correspondences between the sub-lattice of subgroups of G containing N_{i} and the lattice of subgroups of G / N_{i}.

[^0]: ${ }^{1}$ See for instance the Wikipedia article on $\operatorname{PSL}(2,7)$.
 ${ }^{2}$ The figures were drawn with the help of the excellent software package GroupNames by Tim Dokchitser.

