
Assignment 5 – Solutions

MATH 3175–Group Theory

Problem 1 Let G = Z×
32 the multiplicative group of invertible elements in Z32. Then

G = {[a] | a ∈ Z, 0 < a < 32, gcd(a, 32) = 1}
= {[a] | a ∈ Z, 0 < a < 32, 2 - a}
= {[]1], [3], [5], [7], [9], [11], [13], [15], [17], [19], [21], [23], [25], [27], [29], [31]},

an abelian group of order 16. The subgroup H = 〈[31]〉 = {[[1], [31]〉 is a cyclic group of order 2,
while the subgroup H = 〈[3]〉 = {[[1], [3], [9], [27], [17], [19], [25], [11]} is a cyclic group of order 8.
Clearly, H ∩K = {[1]}. Moreover, HK = G, since all the remaining elements in G (besides those
already in H or K) are of the form h · k with h ∈ H and k ∈ K:

[5] = [31] · [27], [7] = [31] · [25], [13] = [31] · [19], [15] = [31] · [17],

[21] = [31] · [11], [23] = [31] · [9], [29] = [31] · [3].

Since the elements of H and K commute, we may apply the Decomposition Theorem and conclude
that G ∼= H ×K. In other words, G ∼= Z2 × Z8.

Problem 2 For a finite group G, and a prime p such that p | |G|, we write |G| = mpk with p - m,
we let Sylp(G) be the set of p-Sylow subgroups of G, and we denote by np the size of this set. By
Sylow I, np > 0, while by Sylow III, np ≡ 1 (mod p) and np | m. Finally, by Sylow II, all p-Sylow
subgroups are conjugate; thus, if np = 1, then Sylp(G) = {P}, and P is a normal subgroup of G.

1. Let G be a group of order 20 = 4 · 5. We then have n5 ≡ 1 (mod 5) and n5 | 4. Thus, n5 = 1,
and there is a unique 5-Sylow subgroup of G, call it P , which must be a normal subgroup.
Moreover, |S| = 5 is neither 1 nor 20, and so P is a non-trivial, proper, normal subgroup of
G, thereby showing that G is not a simple group.

2. Let G be a group of order 10 ·115. We then have n11 ≡ 1 (mod 11) and n11 | 10; thus, n5 = 1.
Arguing as above, we conclude that G is not simple.

3. Let G be a group of order |G| = pqr with p and q both prime, p < q, and r > 0. We then have
nq ≡ 1 (mod q) and nq | p. The last condition gives nq = 1 or nq = p. But since 1 < p < q,
it follows that p 6≡ 1 (mod q); hence, nq = 1. Once again, this implies that G is not simple.

Problem 3 Let G be a group with |G| = 30 = 2 · 3 · 5, and denote by tr the number of elements
of G that have order r.

1. We have n5 ≡ 1 (mod 5) and n5 | 6; thus, n5 = 1 or 6. Moreover, n3 ≡ 1 (mod 3) and
n3 | 10; thus, n3 = 1 or 10.

2. First note that all the p-Sylow subgroups of G are cyclic. Indeed, there is no repeated factor
in the prime factorization of |G|; thus, if P is a p-Sylow, then |P | = p (and so P ∼= Zp).

Now suppose P1 and P2 are two distinct Sylow p-subgroups of G. Then P1 ∩ P2 is a proper
subgroup of P1 (and also P2), and so |P1 ∩ P2| divides |P1|, by Lagrange’s theorem. But
|P1| = p is a prime, and therefore |P1 ∩ P2| = 1, showing that |P1 ∩ P2| = {e}.
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The two facts proved above imply that tp = (p− 1)np, for every prime p | |G|. (All we used
here is that |G| = p1p2 · · · pn, with all distinct prime factors pi.)

3. If n5 = 6, then t5 = (5− 1)6 = 24. Likewise, if n3 = 10, then t5 = (3− 1)10 = 20.

4. If both n5 = 6 and n3 = 10, then 30 = |G| > t5+ t3 = 24+20 = 44, a contradiction. Thus, we
must have either n5 = 1 or n3 = 1. In either case, the argument from the previous problem
shows that G contains a non-trivial, proper normal subgroup (or order 5 or 3); hence, G is
not simple.

Problem 4 Let p be a prime.

1. The symmetric group Sp has order p! = (p− 1)! · p. The prime p divides p!, but not (p− 1)!.
Thus, the Sylow p-subgroups of Sp have order precisely p.

2. One such Sylow p-subgroup is H = 〈(12 . . . p)〉, the cyclic group of order p generated by the
cyclic permutation (12 . . . p) that sends 1→ 2→ · · · → p→ 1.

3. Recall the following: if σ = (a1 . . . ak) is a k-cycle, and τ is any permutation, then τστ−1 is
the k-cycle (τ(a1) . . . τ(ak)).

Now suppose p > 3, and letH ≤ Sp be the above subgroup. Taking τ = (12) and σ = (12 . . . p)
we get τστ−1 = (213 . . . p), which does not belong to H. Thus, H is not normal.

Problem 5 The group G = GL3(Z2) has order (23− 1)(23− 2)(23− 22) = 168 = 23 · 3 · 7. A Sylow
2-subgroup of G must have order 23 = 8. We have seen before such a subgroup (on the Midterm
exam): it is the Heisenberg group of 3× 3 upper-diagonal matrices entries in Z2 with 1s along the
diagonal. In turn, this group is isomorphic to the dihedral group D4 of order 8.

Bonus question: By Sylow III, the number n2 of Sylow 2-subgroups satisfies n2 ≡ 1 (mod 2) and
n2 | 21; thus n2 ∈ {1, 3, 7, 21}. It can be shown that G is actually a simple group: it is isomorphic to
PSL(2,Z7), the famous Klein simple group of order 168 (the smallest non-abelian simple group after
the alternating group A5 with 60 elements, which is isomorphic to PSL(2,Z5)).

1 This immediately
rules out n2 = 1, since otherwise H would be normal, contradicting the fact that G is simple. But
it also rules out n2 = 3, since otherwise the corresponding representation, ϕ : G→ S3, cannot have
ker(ϕ) = {1} (since 168 > 3! = 6), and also cannot have ker(ϕ) = G (since ϕ is transitive, by Sylow
II), and so ker(ϕ) is a proper, non-trivial normal subgroup of G, thereby contradicting the fact that
G is simple. So this leaves open the question whether n2 = 7 or n2 = 21, since 168 divides both 7!
and 21!, so the previous argument(s) are not dispositive. The answer, in fact, is n2 = 21.

Indeed, the group G has 21 elements of order 2, and together they form a conjugacy class, C =
{z1, z2, . . . , z21}. The centralizer in G of each such element zi is a group of order 8, and so must
be a Sylow 2-subgroup, call it Pi. For instance, H is the centralizer of the matrix with 0’s next
to the diagonal, and a 1 in the upper corner; if we call this matrix z1, then P1 = H. Moreover, if
zi = giz1g

−1
i , then Pi = giHg

−1
i , and so Syl2(G) = {P1, P2, . . . , P21}, as claimed.

Problem 6 Let G = D6 = 〈r, s | r6 = s2 = (sr)2 = 1, and consider the normal subgroups
N1 = 〈r3〉 and N2 = 〈r2〉. The lattice of subgroups of G, as well as those of its respective factor
groups, G/N1 and G/N2, are depicted below.2 In each case, the projection map πi : G → G/Ni

1See for instance the Wikipedia article on PSL(2,7).
2The figures were drawn with the help of the excellent software package GroupNames by Tim Dokchitser.
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(i = 1, 2) establishes a 1-to-1 correspondences between the sub-lattice of subgroups of G containing
Ni and the lattice of subgroups of G/Ni.

{1}

Z2Z2 Z2N1 = Z3

Z2
2S3 S3Z6

D6

3 3

3

N1/N1 = {0}

S3/N1 = Z2Z6/N1 = Z2 S3/N1 = Z2

D6/N1 = Z2
2

{1}

N2 = Z2Z2 Z2Z3

Z2
2S3 S3Z6

D6

3 3

3

N2/N2 = {1}

Z2
2/N2 = Z2Z6/N2 = Z3

D6/N2 = S3

3

3


